Bisection Method MATLAB Program with Output

Table of Contents

This program implements Bisection Method for finding real root of nonlinear equation in MATLAB.

In this MATLAB program, y is nonlinear function, a & b are two initial guesses and e is tolerable error.

MATLAB Source Code: Bisection Method


% Clearing Screen
clc

% Setting x as symbolic variable
syms x;

% Input Section
y = input('Enter non-linear equations: ');
a = input('Enter first guess: ');
b = input('Enter second guess: ');
e = input('Tolerable error: ');

% Finding Functional Value
fa = eval(subs(y,x,a));
fb = eval(subs(y,x,b));

% Implementing Bisection Method
if fa*fb > 0 
    disp('Given initial values do not bracket the root.');
else
    c = (a+b)/2;
    fc = eval(subs(y,x,c));
    fprintf('\n\na\t\t\tb\t\t\tc\t\t\tf(c)\n');
    while abs(fc)>e
        fprintf('%f\t%f\t%f\t%f\n',a,b,c,fc);
        if fa*fc< 0
            b =c;
        else
            a =c;
        end
        c = (a+b)/2;
        fc = eval(subs(y,x,c));
    end
    fprintf('\nRoot is: %f\n', c);
end

Bisection Method MATLAB Output


Enter non-linear equations: cos(x) - x * exp(x)
Enter first guess: 0
Enter second guess: 1
Tolerable error: 0.00001


a		b		c		f(c)
0.000000	1.000000	0.500000	0.053222
0.500000	1.000000	0.750000	-0.856061
0.500000	0.750000	0.625000	-0.356691
0.500000	0.625000	0.562500	-0.141294
0.500000	0.562500	0.531250	-0.041512
0.500000	0.531250	0.515625	0.006475
0.515625	0.531250	0.523438	-0.017362
0.515625	0.523438	0.519531	-0.005404
0.515625	0.519531	0.517578	0.000545
0.517578	0.519531	0.518555	-0.002427
0.517578	0.518555	0.518066	-0.000940
0.517578	0.518066	0.517822	-0.000197
0.517578	0.517822	0.517700	0.000174
0.517700	0.517822	0.517761	-0.000012
0.517700	0.517761	0.517731	0.000081
0.517731	0.517761	0.517746	0.000035
0.517746	0.517761	0.517754	0.000011

Root is: 0.517757

  1. Bisection Method Algorithm
  2. Bisection Method Pseudocode
  3. Python Program for Bisection Method
  4. C Program for Bisection Method
  5. C++ Program for Bisection Method
  6. MATLAB Program for Bisection Method
  7. Bisection Method Advantages
  8. Bisection Method Disadvantages
  9. Bisection Method Features
  10. Convergence of Bisection Method
  11. Bisection Method Online Calculator